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Abstract. Respiratory measures of oxygen and carbon dioxide are routinely used to estimate the body’s
steady-state metabolic energy use. However, slow mitochondrial dynamics, long transit times, complex
respiratory control mechanisms, and high breath-by-breath variability obscure the relationship between
the body’s instantaneous energy demands (instantaneous energetic cost) and that measured from
respiratory gases (measured energetic cost). The purpose of this study was to expand on traditional
methods of assessing metabolic cost by estimating instantaneous energetic cost during gait adaptation
and other non-steady state conditions. To accomplish this goal, we first imposed known changes in
energy use (input), while measuring the breath-by-breath response (output). We used these input/output
relationships to model the body as a dynamic system that maps instantaneous to measured energetic
cost. We found that a first-order linear differential equation well approximates transient energetic cost
responses during gait. Across all subjects, model fits were parameterized by an average time constant
(t) of 42 + 12 s with an average R? 0f 0.94 + 0.05 (mean + SD). Armed with this input/output model,
we next tested whether we could use it to reliably estimate instantaneous energetic cost from breath-by-
breath measures under conditions that simulated dynamically changing gait. A comparison of the
imposed energetic cost profiles and our estimated instantaneous cost demonstrated a close
correspondence, supporting the use our methodology to study the role of energetics during locomotor

adaptation and learning.
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1. INTRODUCTION

Steady state measurements of metabolic energetic cost have provided valuable insight into why and
how we walk the way we do. Energetic cost, in this context, refers to the input energy required to
power the cellular processes underlying the body’s movement. This energy is liberated from glucose,
fats, and other stored foodstuffs in a reaction that requires oxygen and produces carbon dioxide (3).
Consequently, energetic cost is typically measured indirectly by quantifying the oxygen and carbon
dioxide in respiratory gases (2, 16). These measurements have demonstrated that we select the most
fundamental characteristics of our gait—such as speed, step frequency and step width—so as to
minimize energetic cost per distance travelled (4, 5, 8, 9, 17, 23, 29, 35, 36, 40). Cost measurements
have also allowed the quantification of energetic penalties imposed by various gait disabilities, and the
evaluation of the effectiveness of rehabilitation interventions at mitigating these added costs (5, 35, 36).
Equipment and wearable devices, be it backpacks (12, 15), prosthetics (25, 41), orthoses (10, 24), or
running shoes (6), have been assessed, iteratively designed, and ultimately improved based on cost

measurements.

The relationship between the body’s instantaneous energy demands (instantaneous energetic cost) and
that measured from respiratory gases (measured energetic cost) is complicated. Consider, for example,
oxygen consumption measured at the mouth. Muscles meet their instantaneous energy demands for
force generation using ATP, a form of stored energy. While ATP is immediately replenished using
another form of stored energy, creatine phosphate, the mitochondrial dynamics that use oxygen and
foodstuffs to replenish creatine phosphate are rather slow (1, 7, 22, 30). There are still further delays
before mitochondrial oxygen consumption is reflected in respiratory gases due to blood circulation
from muscle to lungs (13), oxygen exchange between the blood and the lungs, and then lung ventilation
itself. The relationship between instantaneous and measured cost cannot be determined by simply

adding up these component time delays because blood gases are under tight neural control (28), and
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these controllers impose their own dynamics. For example, rapid increases in ventilation are often seen
at the onset of exercise (28), preloading the body in anticipation of future mitochondrial oxygen
requirements. Consequently, energetic cost as measured at the mouth can occur in advance of any
actual energy use by muscle. An additional complicating factor is the discrete nature of breathing—
while muscles may be continuously consuming the body’s oxygen, the lungs only replenish oxygen
with each breath and each breath may be of drastically different volume. Irregularities in both depth
and timing of breaths create noisy breath-by-breath estimates of energetic cost that do not reflect true
fluctuations in muscle energy use (14, 20). In summary, the relationship between instantaneous and
measured energetic cost is complicated by mitochondrial dynamics, body transit delays, and respiratory

control mechanisms, and then further obscured by high breath-by-breath variability.

It is due to these complexities that energetic cost is traditionally only measured during long bouts of
constant intensity conditions. By discounting non-steady state regions of cost measurements, the rate at
which the oxygen is entering the body is allowed to reach equilibrium with the rate at which cellular
processes are consuming it. By averaging over minutes of data, high breath-by-breath ‘noise’ is
overcome and the measured energetic cost then accurately matches the instantaneous energetic cost.
While these processing techniques have served us well over the past century, they restrict the research
questions that can be effectively answered. Long-duration steady-state conditions, such as those
experienced on a treadmill, are the exception rather than the norm during real-world walking (21). In
truth, we are continually adjusting our gait to meet the demands of a changing environment and the

energetic cost under these real-world conditions is essentially unknown.

Here, we expand on traditional methods of assessing energetic cost with the primary purpose of
developing a technique to estimate instantaneous energetic cost during gait adaptation. We first
characterized the dynamic relationship between instantaneous and measured energetic cost during

walking. To accomplish this, we enforced known changes in instantaneous energy use (input)—by
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prescribing changes to subjects’ walking speed and step frequency—and measured the respiratory
responses in measured energetic cost (output; Figure 1A). We then modeled the body as a dynamic
system that maps instantaneous to measured energetic cost (Figure 1B). Next, we used this model to
test two approaches for estimating instantaneous energy use from respiratory measures. The inverse
model approach is perhaps the most intuitive—the actual measured energetic cost is smoothed and then
passed through the inverse of the identified model to produce an estimate of the instantaneous energetic
cost (Figure 1C). The forward model approach estimates instantaneous energetic cost as the input that
when passed forward through the identified model produces an estimate of measured cost that best fits

the actual measured energetic cost response (Figure 1D).

2. METHODS

Ten adult subjects (body mass: 67.1 + 6.0 kg; height: 173.7 £ 5.2 cm; mean + SD) with no known
musculoskeletal or cardio-pulmonary impairments participated in this study. Simon Fraser University’s
Office of Research Ethics approved the protocol, and participants gave their written, informed consent
before experimentation. Experiments were performed over two or three days, with no more than two

hours of walking per day to reduce fatigue effects.

2.1 Enforcing rapid changes in instantaneous energetic cost

Subjects were instrumented with indirect calorimetry (VMax Encore Metabolic Cart, ViaSys, IL, USA)
and all walking was performed on an instrumented treadmill (FIT, Bertec Corporation, MA, USA). To
habituate subjects to the experimental set up, they walked at a range of treadmill walking speeds (0.75,
1.00, 1.25, 1.5, and 1.75 m/s) for a minimum of 10-minutes at each speed (31, 33, 34). Subjects next
completed a series of enforced rapid changes in gait. The treadmill speed (walking speed) and
metronome frequency (step frequency) were rapidly and simultaneously increased or decreased using

custom written software (Simulink Real-Time Workshop, Mathworks Inc., MA, USA), in order to
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evoke a step-like change in instantaneous energetic cost (Figure 1A). We chose to not only alter speed,
but also step frequency because people often take tens of seconds to adjust their step frequency to
steady state following perturbations in treadmill walking speed (27, 33). Metronome frequency was set
at the subjects’ preferred step frequency at each speed, defined as the average step frequency during the
final 3-minutes of walking in the habituation trials. Step frequency for an individual step was calculated
as the inverse of the time between foot contact events, identified from the characteristic rapid fore-aft
translation in ground reaction force center of pressure (32). The treadmill speed alternated between 6-
minute periods at a base speed of 1.25m/s and 6-minute periods above or below this base speed (1.5 or
1.75 m/s, and 0.75 and 1.00 m/s, respectively). This resulted in eight different changes in gait
(conditions), including step-like changes up-to and down-from the non-base speeds of 0.75, 1.00, 1.5,
1.75 m/s. Speed presentation order was randomized. We designed these changes to have differing
direction (increase or decrease in speed) and magnitude (absolute speed change of 0.25 or 0.50 m/s) in
order to test if the identified energetic cost dynamics differed across conditions. To compensate for the
variable nature of breath-by-breath measurements and to further control for order effects, we had
subjects complete a second day of testing in which they repeated the enforced gait changes twice with a

newly randomized order, giving us a total of three repeats for each of the eight conditions.

2.2 Modeling the relationship between instantaneous and measured energetic cost

Whipp, Wasserman and colleagues have previously modeled ventilatory gas dynamics during non-
steady state cycling (37, 39). Given step changes in work rate, they found the oxygen uptake and
carbon dioxide output could be well described by first-order differential equations with an
accompanying time delay. Here, we use their model as a starting point for our modeling efforts while
recognizing that gas kinetics during walking and cycling are not constrained to have identical
dynamics. We modeled the relationship between the instantaneous energetic cost (our input) and the

measured cost (our output) as a single dynamic process comprising a time-delayed first-order linear
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ordinary differential equation. The mathematical representation of this model expressed in the

frequency domain, takes the form:

Y(s) = H(s)X(s), (1)
where
H() = sqe™, )

X (s) is the input instantaneous energetic cost, and Y (s) is the output measured energetic cost. The
parameter T is a time constant characterizing the rate of change, A represents the amplitude of the
change, and § is a time delay. One may understand this model as a low-pass filter, where a rapid
change in input (instantaneous energetic cost) will result in a slow and smoothed output response
(measured energetic cost), and the amount of slowing and smoothing will increase with the magnitude
of 7. Thus, if one were to see very quick changes in measured respiratory energetic cost, it would mean
there was an exceptionally large and rapid change in the underlying instantaneous energetic cost. One
might also understand this model in terms of its response to a step input, where the produced response
would take the form of an exponential rise to steady state with a delay between the step input and the

beginning of the response.

To fit this model to our data, we analyzed three minutes of metabolic data prior to each gait change and
six minutes of data following the gait change. The magnitude of each trial was normalized to unity to
allow us to compare and average the steps of differing magnitude and direction. To accomplish this
normalization, we first subtracted the steady-state value before the gait change (the average of minutes
-3 to 0) and then divided by the amplitude of the change (the average of minutes 3 to 6). Note that this
normalization process does not affect any dynamics in the measured cost response. To solve for our
unknown model parameters (t and 6), we used weighted least-squares optimization to minimize the

residuals between our model and measured data. The optimization uses the Levenberg-Marquardt
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algorithm and was implemented with MATLAB’s nlinfit function. Due to prior normalization, best-fit
amplitudes had a value of one (4 =1). In order to avoid known convergence issues with delayed
dynamic models (19), we visually confirmed the accuracy of the fitted time delays. We assessed the
goodness-of-fit of our estimated parameters by calculating the R’ value between the model and our
measured data. As a test of model sufficiency we also evaluated whether the addition of second
process, modeled as an additional time-delayed first-order linear differential equation, produced a

better fit to our data.

To test whether the same model holds regardless of magnitude or direction, we first separately fit our
model to each of the eight conditions (grouped only across repeats). We then used repeated measures
ANOVA to test for differences in our solved parameters between the different magnitudes and

directions. If appropriate, we then grouped trials of the same direction (increase or decrease in speed)
or magnitude (absolute speed change of 0.25 or 0.50 m/s) and tested for differences using a Student’s

paired t-test. For all tests, we accepted p < 0.05 as statistically significant.
2.3 Estimating instantaneous energetic cost during dynamically changing gait

We next assessed if our solved model could be used to estimate instantaneous energetic cost from
measured breath-by-breath energetic cost. To accomplish this, we had two representative subjects
return for a third day of testing. Our goal was to enforce instantaneous energetic cost profiles that
differed from those upon which our model was based. To design varying instantaneous energetic cost
input profiles, we leveraged the fact that subject’s energetic cost will increase as their step frequency
deviates from preferred (18, 29). To quantify this relationship, our test subjects first walked on the
treadmill at 1.25m/s for six minutes at nine enforced step frequencies that were at, above, and below
preferred (0, +5, +10, £15, £20 % deviation from preferred step frequency). For each enforced step

frequency, we took an average of the final three minutes of steady-state energetic cost data, leaving us
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with nine data points that we then fit with a cubic polynomial (Figure 2B). Note that during these
steady-state regions, the average measured energetic cost is equivalent to the average instantaneous
energetic cost, as the gas exchange measured at the mouth has reached equilibrium with the gas

exchange occurring at the muscle tissue level.

Next, the solved polynomial was used to design step frequency profiles that, at constant treadmill speed
of 1.25m/s, would evoke three distinct input muscle energy use profiles—a step, a ramp, and an
adaptation profile (Figure 2A). The step profile, although the same shape as the original input profile
on which we based our model, imposed different physical constraints on the subject, as treadmill speed
was held constant and only step frequency was rapidly increased. The ramp profile was markedly
different from that of the step in that step frequency was gradually increased over the course of
minutes. The adaptation profile was designed to mimic a fast adaptation, where a subject’s
instantaneous energetic cost may initially step up in response to a perturbation and then rapidly decay
within tens of seconds. For each trial, treadmill speed was held constant at 1.25m/s and the subject was
asked to match their steps to the changing metronome frequency (Figure 2C) while we measured

energetic cost. The subjects completed three repeats for each input profile shape in randomized order.

We then used two different approaches to estimate instantaneous energetic cost from measured cost,
each approach having distinct strengths and drawbacks. Recall that for each subject, we have solved for
an individualized model that maps instantaneous to measured energetic cost. Therefore, the inverse of
this model will do the opposite: map measured to instantaneous energetic cost. This is the basis of our
inverse model approach (Figure 1C). By passing a subject’s measured energetic cost data though their
inverse model, we can directly compute the instantaneous energetic cost. However, it was necessary to
first smooth the measured data. Passing unsmoothed data through the inverse model, which functions
like a high pass filter, would effectively amplify high frequency components in the measured signal and

these high frequency components tend to be dominated by the breath-by-breath noise. Although a low
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pass filter could be used to first attenuate noise, it would indiscriminately attenuate all high frequency
inputs, which may include rapid changes in instantaneous energetic cost that we are seeking to identify.
Instead, to estimate the shape of the underlying energetic cost profiles, less the noise, we fit each trial
of measured data with polynomials. A constrained least squares optimization, implemented using
MATLAB?’s Isqlin function, was used to solve for the best-fit polynomial parameters. Polynomial order
was set such that no systematic pattern was observed in the residuals. The fitted curve was required to
pass through the initial steady state value (0 after normalization) at the point of perturbation and had to
reach steady state (1 after normalization) in the last 3 minutes of the trial. These constraints are
reasonable given that the prescribed step frequencies were at steady state during these regions. We did

not constrain the initial slope of the polynomial allowing for rapid initial changes in the smoothed cost.

Our forward model approach can be used in situations where the experimenter has a good first
approximation of the shape of the instantaneous energetic cost profile (Figure 1D). This shape is
described with a set of parameters that are then optimized so that the generated input profile, when run
through the subject’s model, produces an estimate of measured cost that best fits the actual measured
energetic cost response. We used a Nelder-Mead Simplex method, implemented with MATLAB’s
fminsearch function, to solve for the optimal parameter values. For the step input, a single parameter
was optimized: the time of onset of the step. For the ramp input, two parameters were optimized: the
time of onset and the time of offset of the ramp, which together dictate the slope of the ramp. For the
adaptation input, three parameters were optimized: the time of onset, the amplitude of the peak, and a
decay constant. Note that the initial and final steady-state amplitudes were not optimized, as

normalization fixes them at 0 and 1, respectively.

3.0 RESULTS

We found that the dynamic relationship between instantaneous energetic cost and measured energetic

10
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cost could be modeled using a first-order linear ordinary differential equation (Eq. 2). Moreover, we
found that the same model appears to hold regardless of the magnitude or direction of the change in
gait. We did not identify differing model parameters when each of the eight gait changes, of varying
magnitude and direction, were fit separately (p = 0.102). When we then grouped across all trials of the
same direction (increase or decrease in speed) we again found that parameters did not differ between
directions (p = 0.500). The same was found when we grouped trials of the same magnitude (absolute
speed change of 0.25 or 0.50 m/s) (p = 0.094). This indicates that the underlying dynamics were not
significantly different irrespective of the applied magnitude or direction of the change in gait. For

subsequent analyses all trials for an individual subject have been fit together.

Our model described the dynamics of respiratory metabolic cost reasonably well for most subjects.
When compared to the average response, the model accounted for 82-99% of the measured variability
(Figure 3). When the model was compared to individual trials, without averaging, 18-87% of the
measured variability was explained. This considerably larger range in goodness-of-fit is due to the
variability between breaths in measured metabolic cost, and was expected given that we did not attempt
to model breath-by-breath dynamics. Adding a second dynamic process, modeled as an additional time-
delayed first-order linear differential equation, did not appreciably improve our fits; visually no
improvement was evident and on average only an additional 0.9% =+ 1.0% of the variability was

explained (mean + SD).

Across all subjects, model fits yielded an average time constant () of 41.9 + 12.0 s (mean + SD). This
means that 95% of the response to a step-like change input is completed within three time constants, or
125.6 £36.1 s (mean + SD). We did not identify time delays () that were discernable from zero for
any of the ten subjects. Due to normalization, all amplitudes (A4) displayed in Figure 4 have a value of
1. Therefore, the mathematical representation of our model (Eq. 3) simplifies to a transfer function of

the form:

11
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H(s) =1/(42s + 1) 3)

This model enabled accurate estimates of instantaneous energetic cost from respiratory energetic cost
measures. Using both our inverse and forward model approaches, we were able to produce estimates of
instantaneous energetic cost from measured energetic cost that well matched the enforced step, ramp,
and adaptation profiles (Table 1 and Figure 4). For the step and ramp input profiles, both approaches
performed exceptionally well. The R* values between the enforced instantaneous energetic cost profile
and the model-produced estimates of instantaneous energetic cost were between 0.87-0.99 for
individual trials. As a result, averaging measured energetic cost data across the three repeats prior to
applying either approach did little to improve our estimates of instantaneous energetic cost. Thus, for
the step and ramp profiles, it appears possible to accurately estimate instantaneous cost from a single
trial of measured energetic cost data. Single trial estimates of instantaneous energetic cost were less
accurate for the adaptation profile. For subject I, individual trial R* values were as low as 0.26 and 0.38
for the inverse model approach and forward model approach, respectively. For this subject, averaging
measured energetic cost data across the three repeats prior to applying the inverse model approach or
forward model approach improved R” values to 0.66 and 0.75, respectively. Individual trial R* values

for the adaptation trials were substantially better for Subject II (0.77-0.88).
4.0 DISCUSSION

We found that a simple first order linear differential equation can approximate transient energetic cost
responses during gait. When rapid step-like changes in instantaneous energetic cost were enforced, we
observed a single underlying response featuring no discernable delay. On average, subjects took two
minutes to reach 95% of the steady state metabolic cost value, with all but one subject reaching 95%
steady state within three minutes. These same underlying dynamics held regardless of the magnitude or

direction of the change in gait. Despite the collective effect of many sources of complexity—including

12
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mitochondrial dynamics, gas stores, transit delays, and cardio-pulmonary control—a simple model

explains the transient energetic cost response during walking.

This model allowed us to produce reasonably accurate estimates of instantaneous energetic cost from
respiratory cost measures. Our two approaches—the inverse model approach and forward model
approach—resulted in similar estimates of instantaneous energetic cost, and when compared to our
enforced cost profile, R? values were typically greater than 0.90. Both methodologies were able to
capture rapid changes in instantaneous energetic cost that were prescribed during the step trials, as well
as gradual changes and discontinuities that were prescribed during the ramp trials. The poorest
estimates of instantaneous energetic cost were found for the adaptation trials, where fitting the rapid
decay proved somewhat problematic. These sorts of transient changes in cost are more readily distorted
by breath-by-breath noise because there are fewer data points available with which to fit model
parameters. Our adaption trial decayed to steady state with a time constant of 60 seconds, which
equates to only about 20 breaths. Better estimates may be possible with improved noise removal
techniques, improved fitting techniques, or through averaging over a greater number of trial repeats.
Overall, the two approaches produced similar and seemingly accurate estimates of instantaneous
energetic cost. However, each approach is subject to distinct limitations and requires different

assumptions on the part of the user.

The inverse model approach requires little advance knowledge of the underlying instantaneous
energetic cost profile, but is greatly complicated by breath-by-breath noise. High frequency
components of breath-by-breath variability in measured energetic cost are effectively amplified when
passed through the model inverse, obscuring estimated instantaneous energetic cost. To reduce their
contribution, while retaining our ability to fit fast changing inputs, we first fit the noisy metabolic cost
data using a polynomial. We constrained the polynomial to pass through an initial steady state value at
the point of perturbation, and to reach steady state at the end of the trial. For an experimenter, these

13
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constraints require that the protocol be designed such that the subject begins and ends in steady state.
(These particular constraints are not universal for every experimental paradigm—researchers should
identify whatever constraints on the measured data are imposed by the experimental paradigm and use
them to their fitting advantage.) Although we made no assumptions about the shape of the profile
between the beginning and end steady state regions, complex profiles would not be fit well by a low
order polynomial. In such situations higher order polynomials, splined polynomials, or all together
different functions may be necessary to accurately fit the measured energetic cost profiles. This will
inevitably introduce subjectivity, as the experimenter will be required to make decisions about what

profile changes are ‘true’ and what is simply ‘noise’.

Estimating instantaneous energetic cost using the forward model approach requires some advance
knowledge of the profile shape. This knowledge may be based on the study design or additional
measurements. For example, if the study design calls for a novel force to be rapidly applied to a limb
one may reasonably assume an abrupt increase in instantaneous energy use, followed by an exponential
decay as the subject adapts to the new force. One need not know the timings and magnitudes of the
initial increase and subsequent decay as the forward approach employs optimization to estimate their
values. Alternatively, one may deduce the profile shape from a measured physiological variable, such
as the time course of adjustments to step frequency or muscle activity. It is also possible that the
experimenter has a range of hypotheses about what the input profile shape may be. These hypotheses
can be evaluated by optimizing each candidate input profile and testing which one provides the best fit.
To illustrate this, we fit optimal step, ramp, and adaptation profiles to each of the three responses and
found that each response was best fit by its respective profile shape (e.g. the enforced ramp was best fit
by a ramp profile). Because the experimenter must make assumptions about the underlying profile

shape, the forward approach introduces a bias based on the experimenter’s expectations. Moreover,

14
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there may be situations where the experimenter does not have a reasonable first approximation of the
input profile shape.

In addition to the approach specific limitations described above, there are four more general limitations
to our methodology and analysis. First, we treat our enforced instantaneous energetic cost profiles as a
gold standard to which we compare our model estimates. Although we attempted to enforce a specific
cost profile by controlling walking speed and step frequency, other uncontrolled gait parameters, for
example stance time or muscle activity, may have caused instantaneous energetic cost to deviate from
our desired input profile. As a consequence, our estimates may be better or worse than presented.
Second, the identified model and its average parameters only apply to adult humans. Differences in size
and phylogenetic history are both likely to alter the dynamic relationship of other animals from that in
adult humans. Similarly, the identified model and its average parameters only apply to walking. While
we found that a single process accurately captures the identified dynamic relationship between
instantaneous and measured energetic cost, Whipp and colleagues have repeatedly found that there are
two important processes in cycling, perhaps reflecting a difference in cardio-pulmonary control
between the two tasks (37, 38). A fourth limitation of our model is that it can only be applied to
walking tasks within the tested metabolic cost range. At metabolic rates above 400W, many subjects
may breach the anaerobic threshold, causing oxygen stores to be depleted faster than they can be
replenished and rendering our measured energetic cost a poor estimate of the underlying instantaneous
energetic cost. At metabolic rates below 100W it is possible that more complex dynamics exist at the
onset of exercise, as first described by Whipp and colleagues (37). Overall, our exact model can be
used to estimate instantaneous energetic cost of walking at metabolic rates ranging from 100W to
400W. Outside of this range, care should be taken to first identify the underlying dynamic relationship
between instantaneous and measured energetic cost before applying our inverse or forward model

approach.

15
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Our methodology may prove useful for both post-hoc and real-time estimation of energetic cost. Its
accuracy benefits from a personalized model for each subject, but for some situations, it may suffice to
use the average dynamic model identified in the current experiments. As an initial test of this
possibility, we simulated measured energetic cost to an adaptation input profile for a subject with an
exceptionally slow time constant of 60s. We then compared instantaneous cost estimates using this
subject specific time constant to that obtained if we assumed our average time constant (42s). Using the
average time constant still made it clear that instantaneous cost adapted by demonstrating the
characteristic rapid increase followed by a slower decay. As to be expected, R* values dropped when
using the average time constant, but nearly 90% of the variability was still explained. This general
model is particularly useful because it allows experimenters to return to previously measured energetic
cost data and estimate instantaneous energetic cost without the need for a subject specific model of cost
dynamics. Another use for the identified dynamic model is real-time estimation of instantaneous cost.
Kalman filters, and similar algorithms, leverage dynamic models of the system to help correct for noise
and delays (11, 26). Real-time estimates of instantaneous energetics may prove useful for biofeedback,
manipulating gait training based on energetic cost, or simply for online determination of when a

research subject has reached steady state.

An ability to assess instantaneous energetic cost during non-steady gait could unveil new insights into
walking. People rarely experience metabolic steady-state conditions; less than 1% of real-world
walking bouts last the requisite five minutes (21). The fields of locomotor adaptation and learning aim
to shift our scientific focus from the steady state to this real-world behaviour. Energetic concepts—
such as economy, efficiency, and least effort—are often used to explain adaptations to novel
environments or tasks. Yet, as researchers work to understand the neuronal circuitry involved in gait
adaptation, and quantify the timescales over which adaptation occurs, they have been unable to

effectively make direct comparisons to energetic cost during the adaptation itself. An understanding of
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the role of energy use may help us understand how we adapt to changing environments, how we
compensate for injury or motor control deficits, and how we learn new tasks. By presenting a
methodology for assessing instantaneous energetic cost during adaptation and other non-steady gait
conditions, we aim to provide our field with a tool with which we can investigate previously

unanswerable questions.

17



20

GRANTS
This work was supported by a Vanier Canadian Graduate Scholarship (JCS) and the U.S. Army

Research Office grant #W911NF-13-1-0268 (JMD).



21
Estimating instantaneous energetic cost

REFERENCES

1. Barclay CJ, Arnold PD, Gibbs CL. Fatigue and heat production in repeated contractions of
mouse skeletal muscle. The Journal of Physiology 488 (3): 741-752, 1995.

2. Brockway JM. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr
Clin Nutr 41: 463471, 1987.

3. Brooks GA, Fahey TD, White TP. Exercise physiology: Human bioenergetics and its
applications.

4, Donelan JM, Shipman DW, Kram R, Kuo AD. Mechanical and metabolic requirements for
active lateral stabilization in human walking. Journal of Biomechanics 37: 827-835, 2004.

5. Fisher SV, Gullickson G. Energy cost of ambulation in health and disability: a literature
review. YAPMR 59: 124-133, 1978.

6. HARDIN EC, van den Bogert AJ, Hamill J. Kinematic Adaptations during Running: Effects
of Footwear, Surface, and Duration. Med Sci Sports Exerc (May 2004). doi:
10.1249/01.MSS.0000126605.65966.40.

7. Hogan MC. Fall in intracellular PO2 at the onset of contractions in Xenopus single skeletal
muscle fibers. Journal of Applied Physiology 90: 1871-1876, 2001.

8. Holt KG, Hamill J, Andres RO. Predicting the minimal energy costs of human walking. Med
Sci Sports Exerc 23: 491-498, 1991.

9. Holt KG, Jeng SF, Ratcliffe R, Hamill J. Energetic Cost and Stability during Human Walking
at the Preferred Stride Frequency. J Mot Behav 27: 164178, 1995.

10.  Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic Costs and Muscle Activity
Patterns During Robotic- and Therapist-Assisted Treadmill Walking in Individuals With
Incomplete Spinal Cord Injury. Phys Ther 86: 1466—1478, 2006.

11. Kalman RE. A new approach to linear filtering and prediction problems. Journal of basic
Engineering 82: 3545, 1960.

12. Knapik J, Harman E, Reynolds K. Load carriage using packs: a review of physiological,
biomechanical and medical aspects. App! Ergon 27: 207-216, 1996.

13.  Krustrup P, Jones AM, Wilkerson DP, Calbet JAL, Bangsbo J. Muscular and pulmonary O2
uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in
humans. The Journal of Physiology 587: 1843—1856, 2009.

14.  Lamarra N, Whipp BJ, Ward SA, Wasserman K. Effect of interbreath fluctuations on
characterizing exercise gas exchange kinetics. J Appl Physiol 62: 2003-2012, 1987.

15. LEGG SJ, RAMSEY T, KNOWLES DJ. The metabolic cost of backpack and shoulder load
carriage. Ergonomics 35: 1063—-1068, 1992.

16. McLean JA, Tobin G. Animal and human calorimetry.

19



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

22
Estimating instantaneous energetic cost

Minetti AE, Ardigo LP, Saibene F. Mechanical determinants of gradient walking energetics in
man. The Journal of Physiology 472: 725-735, 1993.

Minetti AE, Capelli C, Zamparo P, di Prampero PE, Saibene F. Effects of stride frequency
on mechanical power and energy expenditure of walking. Med Sci Sports Exerc 27: 1194-1202,
1995.

Miiller T, Lauk M, Reinhard M, Hetzel A, Liicking CH, Timmer J. Estimation of Delay
Times in Biological Systems. Annals of Biomedical Engineering 31: 1423—-1439, 2003.

Myers J, Walsh D, Sullivan M, Froelicher V. Effect of sampling on variability and plateau in
oxygen uptake. Journal of Applied Physiology 68: 404—410, 1990.

Orendurff MS. How humans walk: Bout duration, steps per bout, and rest duration. JRRD 45:
1077-1090, 2008.

Poole DC. Oxygen's double-edged sword: balancing muscle O2 supply and use during exercise.
The Journal of Physiology 589: 457-458, 2011.

Ralston HJ. Energy-speed relation and optimal speed during level walking. Int Z Angew Physiol
17: 277-283, 1958.

Sawicki GS, Ferris DP. Mechanics and energetics of level walking with powered ankle
exoskeletons. Journal of Experimental Biology 211: 1402—1413, 2008.

Schmalz T, Blumentritt S, Jarasch R. Energy expenditure and biomechanical characteristics of

lower limb amputee gait:: The influence of prosthetic alignment and different prosthetic
components. Gait & Posture 16: 255-263, 2002.

Simon D. Kalman filtering. Embedded Systems Programming 14: 72-79, 2001.

Snaterse M, Ton R, Kuo AD, Donelan JM. Distinct fast and slow processes contribute to the

selection of preferred step frequency during human walking. Journal of Applied Physiology 110:
1682-1690, 2011.

Turner DL. Cardiovascular and respiratory control mechanisms during exercise: an integrated
view. J. Exp. Biol. 160: 309-340, 1991.

Umberger BR, Martin PE. Mechanical power and efficiency of level walking with different
stride rates. Journal of Experimental Biology 210: 3255-3265, 2007.

Van Beek JH, Westerhof N. Response time of cardiac mitochondrial oxygen consumption to
heart rate steps. Am. J. Physiol. 260: H613-25, 1991.

Van de Putte M, Hagemeister N, St-Onge N, Parent G, de Guise JA. Habituation to treadmill
walking. Biomed Mater Eng 16: 43-52, 2006.

Verkerke GJ, Hof AL, Zijlstra W, Ament W, Rakhorst G. Determining the centre of pressure
during walking and running using an instrumented treadmill. Journal of Biomechanics 38: 1881—
1885, 2005.

20



33.

34.

35.

36.

37.

38.

39.

40.

41.

23
Estimating instantaneous energetic cost

Wall BJ, Charteris J. The process of habituation to treadmill walking at different velocities.
Ergonomics 23: 425-435, 1980.

WALL JC, Charteris J. A kinematic study of long-term habituation to treadmill walking.
Ergonomics 24: 531-542, 1981.

Waters RL, Hislop HJ, Perry J, Antonelli D. Energetics: application to the study and
management of locomotor disabilities. Energy cost of normal and pathologic gait. Orthop. Clin.
North Am. 9: 351-356, 1978.

Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait & Posture
9:207-231, 1999.

Whipp BJ, Ward SA, Lamarra N, Davis JA, Wasserman K. Parameters of ventilatory and
gas exchange dynamics during exercise. J Appl Physiol 52: 1506-1513, 1982.

Whipp BJ, Ward SA. Physiological determinants of pulmonary gas exchange kinetics during
exercise. Med Sci Sports Exerc 22: 62, 1990.

Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load
work. Journal of Applied Physiology 33: 351-356, 1972.

Zarrugh MY, Radcliffe CW. Predicting metabolic cost of level walking. Eur J Appl Physiol
Occup Physiol 38: 215-223, 1978.

Zelik KE, Collins SH, Adamczyk PG, Segal AD, Klute GK, Morgenroth DC, Hahn ME,
Orendurff MS, Czerniecki JM, Kuo AD. Systematic Variation of Prosthetic Foot Spring
Affects Center-of-Mass Mechanics and Metabolic Cost During Walking. /IEEE Trans. Neural
Syst. Rehabil. Eng. 19: 411419, 2011.

21



24
Estimating instantaneous energetic cost

FIGURES

A. Experimental Set-Up
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Figure 1: Experimental design. A. Experimental Set-up. To evoke known changes in instantaneous
energetic cost, subjects’ walking speed (treadmill speed) and step frequency (metronome frequency)
was enforced and the resulting breath-by-breath energetic cost response was measured using indirect
calorimetry. B. We then modeled the relationship between instantaneous energetic cost (input) and

measured energetic cost (output). Using this model we estimated instantaneous energetic cost from the
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measured energetic cost response using two approaches. C. When using the inverse model approach,
noisy output data was fit with a constrained polynomial, which was then passed through the inverse of
our identified model to produce an estimate of instantaneous energetic cost. D. When using the forward
model approach, we assumed the general shape of the input profile is known and described it by a set
of parameters, which were then optimized so that the input profile, when run forward through our
identified model, generated an output profile that best fit our measured output. Grey shaded boxes have

been used to highlight what parameters were optimized for each processing technique.
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C. Enforced Deviation from
Preferred Step Frequency
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Function of Step Frequency
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Figure 2: A. We sought to enforce three differing but known input changes in instantaneous energetic

cost. B. In order to identify what step frequency profiles would evoke these desired changes in

instantaneous energetic cost, we identified each subject’s relationship between energetic cost and

deviation from preferred step frequency. C. Using the solved relationship between energetic cost and

step frequency, we designed step frequency profiles that would evoke our desired change in

instantaneous energetic cost. The black line illustrates the step frequency commanded with a

metronome and the grey line illustrates the subjects actual step frequency. All presented data is from

Subject I.
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T=64.21
R?=0.99
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Figure 3. Modeling the measured energetic cost response. The average measured energetic cost
response (black line) to 24 rapid changes in instantaneous energetic cost (grey line) is shown for each
subject. The red line illustrates the model that best fits each subject’s response. Model time constants
(1) and R? values for each fit are presented on the right hand side of each panel. Before we averaged the
data, we normalized all instantaneous and measured energetic cost changes to unity by subtracting the

initial steady-state values and dividing by the amplitude of the final steady-state values.
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A. Subject | B. Subject I
Input Output Input Output
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Figure 4: Estimating changes in instantaneous energetic cost. A. Subject I results. The enforced
instantaneous energetic cost (input) and measured energetic cost response (output) are shown in black,
in the left and right panels respectively for the step, ramp, and adaptation profiles. The red lines
represent estimates from the inverse model approach, and the blue lines represent estimates from the
forward model approach. R” values calculated between the enforced instantaneous energetic cost
profiles and the inverse model approach estimates of muscle energy use are shown in red text, while
that for the forward model approach estimates are shown in blue text. Data corresponding to the

median trial and average trial (shaded box) have been plotted. B. Subject II results. Note that for the
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Subject II, the step trials lasted only 540s as apposed to 720s due to a protocol change during data
collection. Despite this change, the time given was sufficient to allow the subject to reach steady state,

allowing us to process these trials in the same manner as all other trials.
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Table 1: R? values between the enforced and the model-produced estimates of instantaneous energetic
cost for both the inverse model and forward model approach. We collected three repeats for each of the
step, ramp, and adaptation input profiles. R values from the three repeats have been ordered from
highest to lowest. To produce the average value, we averaged the measured energetic cost data across
the three repeats prior to applying the inverse model or forward model approach. Note that for each

subject and each approach, we have plotted the data corresponding to the median and averaged trials in

Figure 5.
Input  Trial Subject A Subject B
Inverse Forward Inverse Forward

Step  best 0.98 0.99 0.99 0.99
median 0.97 0.99 0.99 0.98
worst 0.94 0.93 0.94 0.87
average 0.98 0.98 0.99 0.99

Ramp best 0.99 0.99 0.99 1.00
median 0.98 0.99 0.97 0.98
worst 0.98 0.99 0.89 0.93
average 0.99 1.00 0.99 0.99

Adapt best 0.90 0.96 0.84 0.82
median 0.64 0.46 0.77 0.86
worst 0.38 0.26 0.79 0.78
average 0.75 0.66 0.84 0.88
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